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A problem on the feedback control of a hyperbolic system under conditions of 
uncertainty or conflict is analyzed. The problem is interpreted as a position 
differential game [l-3] in a suitable functional space. The controls enter 
into the boundary conditions and the mechanism for developing these controls 

is described by an ordinary differential equation. The constructions are based 
on a approach to position control problems for distributed-parameter systems 
developed in [4-81. As in the case of ordinary differential equations [l-3] the 
class of strategies solving the problems being examined is indicated. 

1. Let 52 be a bounded connected open set in the Euclidean space R, and I’ , 
the boundary of Q s be an (n- l)- dimensional manifold. We consider the conflict- 

controlled system 

a"y (t, 5) 

ate = AY (t, Z) + g (t, 2) in Q = (to, 6) x i2 

- = f(t, w) + B(t)u - c(t)& UT(&)) = wg 
at 

(1. 1) 

(1.2) 

Here aij (x) = aji (5) are functions continuously differentiable on a ; a constant 

Y ‘2 0 exists for which the inequality 

v (El” + . . . 
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where a (x) is a function continuous on a, for any x E Q and Ei E R,, i = 
1 n. H1 ($2) is a first-order Sobolev space on set Sz [9]. L, (Q) 
is’-ie’ipace (of classes) of functions (Lebesgue-) square-summable on Q . We 
assume: domain 0 has a boundary I’ for which the elements of space H1 (a) have 

traces on I’ from L, (I’) and the formula for integration by parts and the theorem 

on the compactness of the imbedding of H’ (Q) into L2 (8) and into L, (r) are 

true for them (for example, see [S-11]); &’ E: Ls (Q) is a specified perturbation; W 
is an m-dimensional phase vector of system (1.2); CT (s) is a measurable function 
bounded on r , For the sake of unessential simplifications we set (see [lo- 121) 
c > 0, a Q 0, cs2 + a2 + 0 on r. The function in the right-hand side of (1.2) 
is assumed to be continuous in all arguments and to satisfy a Lipschitz condition in 

w in each bounded domain of space R, and the condition of uniform continuability 

of solutions w (t) for t > t, under every choice 

u (t) = P @It u (t) E Q 0) (1.3) 

where P (t) and Q (t) are convex compacta in Euclidean spaces R, and Rl, , 
respectively, measurable and equibounded with respect to t E [to, +I; B (t) and 

c 0) are continuous matrices of appropriate dimensionalities. A closed set M is 

specified in space RI X H’ (Q) X L, (Q) t W e are required to construct a method 

for choosing a feedback control u (feedback control v)l, producing realizations 
u [t] (u [t]) that are Lebesgue-measurable on It,,, sl and satisfying (1.3). for 

which the condition ({t, y (t, a), dy (t, *) / at } E &c’ is fulfilled for some t E 

!i$, 61 (the condition {t, y (t, *), &/ (t, .> / at} @! M is fulfilled for all t E 

[t,, 61) for any law of formation of the measurable realization u IfI cz Q (t) (U [tk p(t)), 

N o t e 1.1. The smoothness of the generalized solutions of system (1.1) (see 
[g-12]) essentially depends upon the smoothness of the boundary conditions in Z. 

Generalized solutions from the so-called “energy” classes (see [ll]) are of practical 

interest. The introduction of an ordinary differential equation into system (1.1) is 
one of the possible variants for obtaining the necessary smoothness of the generalized 

solutions. From the mechanical point of view the problem can be interpreted as a 

problem of obtaining the optimal perturbed state of an oscillating body B under 
conditions of undeterminate interference by means of a mechanical force a (4 w (t) 
distributed on the body’s boundary r. In this connection it is considered that the 

law of variation of force w is described by an ordinary differential equation, 

Let’us pose the problem more precisely. Let {P; qj be a collection of all 
functions u (t) E P (t)measurable on a set q . A vector r = {w, Yl, i/2}, where 

w E R,, y, E H’ 64 and ys E L, (Q), is called a state of system (1. Q(1.2). 
The pairs {t, r}, t E [to, glare called positions, A rule associating a nonempty 
set 

u (tit t2, r> C {pi [t19 t2)) (V (t19 t2J c {Q; [tl, t2)}) 
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with each triple (tr, ts, r), where t, Q t, < t, <S and r = (w, yl, ya}, 
is called the first (second} player’s strategy U (7) o 

We consider the system adjoint to (1.1). When ‘P (t, X) ranges space La (Q) 

(see [9,11]) the solution of the adjoint system (see [9,11, lZJ) ranges a set X to which 
we allot a topology introduced by the mapping rp --f r ( . , . ; rp), where z ( . , + i ‘p) 
is a solution of the adjoint system. Let A be a partitioning of interval [to, 61 by 
points rir i = 1,. . . , n (A) (‘ci+t > Ti, TI = b, ‘b(8) = 6) and let 
6 (A) = maxi (ziiI - xi). , Thepair (3 (t, ')A, 8y (t, ')A /atI = 

tz/ (t7 g:; to, won yet @I* u>A, !.k'h s; to, mo, !/o, ,!#I, VIA), z E G is 
called a motion of system (1.1) from position (to, mot ys, yl), corresponding to 
strategy U and partitioning A, if 

Here w (t) is a solution of the integral equation 

(1.6) 

where on [ri, ~i+~ 1 the controls u (*) E u (‘rit Ti+l, W (zi)l y (rt;i, *)A, 

yt' ('vi, *)A) and v (+) E (0; [-cs, ~i+~)), i = 1,. . ., m (A) - 1; &’ 

(t, ')A is the derivative with respect to t of y (t, .jA as an element of space 

C’ (Pa, @I; J% (s-8). The motion (Y (6 z; to, wa, %, YI, VA, 

Ytl (=&G to, wo, PO, Yl, V)A) is defined similarly. Here Ck ([to, 61; X) is the 

space of functions I% times continuously differentkable on Ita, 6l+ with values in 
space X. The set of motions introduced is not empty. 

N 0 t e 1.2. The existence of function @ (f, x)& E & (o), satisfying the integral 

indentity (1.5), follows from the results in [9,113. To prove that Y (*i ‘)A E C’ 

([to, S]; Hr (Q)) [; 0 (@s, 61; Ls (Sa)) we use the expansion of the solution of (1.5) 

into a series in the eigenfunctions of the spectral problem 

Ao = -ho, &I, / dv, + (5o Ir = ’ 
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and tb.e estimate from [13]. 
This problem has a solution from H1 (a) f or a denumerable number of values of 

h (see [lo, 113. We note that under the assumptions made, all hj > 0. 
In space H1 (0) we introduce the norm 

equivalent to the norm of space H’ (52) in [lo, 111. We formalize the initial 

problems in the following manner. bet Me be a closed E -neighborhood of set 

M in the space R, X H1 (52) X Ls (Q). 

Problem l(the encounter problem), Constructastrategy u 
with the property: for any e > 0 we can find a positive number 6, for which 

the inclusion {t, Y (t, *)A, 3, (t, *)A} E IIF is fulfilled at somet E [t,, @/for 

all motions {Y (& & &J, %, Ys, &ill @At ?h’ (& 2; to7 to@, got &, u)A} if Only 
S (A) < 6,. 

P r o b 1 e m 2 ( t h e e v a s i o n p r o b 1 e m). Construct a strategy v 

with the property; for any E ) 0 we can find a positive number 60 for which 

the inclusion (I, y (t, ‘)A, yt’ (t, ‘)A) @ ME is fulfilled at all t E 

f&, @] for all motions {jj ft, S; &, Wg, j&-,, yi, V)A, Yt’ c (t7 x; &I, %I l&t !/I 

v)A) if only 6 (A) < 60. 
2. The following basic theorem is valid. 

Theorem 2. 1 (on the alternative in an encounter- 

e v a s i o n g a m e ). One and only one of the following statements is valid for 

my mitbl position {tft, wo, yo, .yrf, wg E R, and(go, yl] E H1 (Si) x L, 

@a, any i=tant 6 > t, and any set M c R, x fP ($22) x L, (a) 
1) a first player’s strategy iJ exists, solving the encounter problem for the data 

mentioned; 
2) a second player’s strategy V exists, solving the evasion problem for the data 

mentioned, 
Let us consider the basic co~tmct~o~s that can be used to prove Theorem 2.1. 

By H we denote the space 

We define set IV’ as 
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We introduce the concept of stable sets by analogy with [l, 4-Q Let KI and K, 

be certain collections of pairs {t, h}, t E [to, 61 and h E H. We say that 

set K, is u-stable relative to set &, if for every choice of the pair {t+, h,} 

6% KI 9 he = (w*, !/*I, y,‘}, the instant t* > t* and the control V ( - ) E 
{Q; it*, P)} we can find at least one control u ( .) E {P; [t,, t*)} under which 
the inclusion 

(2.1) 
it*, r It*]} E K,, (‘6, r h]} E K, 

isvalidatsome rE[&, t*l for the function r [tl={W [tl, y it, -1, .vt’. [ 1, -J}, 
Here w [ t] is a solution of Eq. (1.4) with initial condition We and controls 

u (*) and u (.); {ylt, -1, y;It, .I) is the corresponding motion of system 

(1.1) from the position {t,, w,,., y*l, y,*} on the interval It*, PI. The 
concept of a v-stable bridge is introduced similarly. 

Let K be an arbitrary set in the space of positions {t, r} E [to, $j] x H. We 
construct the first player’s strategy U” which we say is extremal to set K . By J 
we denote the following functional on space H X H: 

Jh r2) - (w w21R m + (Yll, !/12)&(Q) -i- (T/217 Y22)ff_' (9 

Jo (r) = J k, 4 W-’ (Q2) = W’ (WI*; TL = {wit gli, y,i}) 

By K (t) we denote the section of set K by the hyperplane T = t. Suppose 

that some triple {t, , t* : r}, has been selected, where t,-, < t* < t* < Q and 

r=(w,y,,y,}EH. l 
If K (t*) f @, then by U” (t*, t*, r)we denote the 

collection of all ue (a ) E {p; [ t*, t*)) with the property: 

1) a sequence of function ZL(“) (. ) E {P; [ t,, t*)}converging weakly in space 

L, (it,, t*); R,,) to function r.P(.); can be found; 

2) a sequence of r‘n E K (t*), rn = {w”, zln, zZ”}, can be found, for which 

lim Jo (r - r,) = inf {Jo (r - ra) 1 ra fZ% K (t*)) 
n-+m 

(2.2) 

3) for each n = 1, 2,. . . 

(w- wn, ti.B(t)n”(t)dt)x = 
‘* m 

min{(w-wn, ]i.H(t)u(l)dt)n,i”(.)t(P; It,, t*))) 
I 

(2.3) 
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The set of Ud(t*, t*, r) is nonempty since (p; it*, t*)} is a subject, weakly 

compact in itself, of space L, (b,, t*j; R,,). The second player’s strategy JF 
extremal to set K is defined similarly, 

By VO we denote strategies upper-semicontinuous in variable r. 
The latter means that for any quantities to < t, < t* < 6 and r E H the 

inclusion u E va (t*, t*, r) follows from the conditions Q + r inH, uk -j V 

weakly in La([ t,, t*); &,h vk = v, (t*, t*, rk)l. By a motion of system 
(1. l)-(1.21, corresponding to strategy U (V) and partitioning A we mean the 

triple{wItla, Y[t, *la, y,'Lt, .lA},wherethepair {p[t, *la, Yt’ [t, -la} 
determines the motion of system (1.1) and w [ tla is determined from (1.6). By 

W (M”) we define the collection of all pairs {thr rrk} E [ t,, S] x H possessing 

the property: for any strategy VO, and any numbers e > 0 and 6 > 0 there 

exists at least one motion {w[t; &., r*, T/‘alj, y!t,z; t*, r*, va]A, Yt’[t, 

x; t df r*, &IA) I corresponding to a partitioning A with diameter 6 (A) < cj of 

the interval [t,, 61 for which the inclusion 

is fulfilled at some instant t E [i,, 61. Here Moe is a closed c-neighborhood 

of set M” in the metric 11 {t, r} 11 = (tz + 11 FllH2 )%. 

L e m m a 2.1. Set W(MO)is u-stable relative to set M”. 
This lemma can be proved by the proof scheme for analogous statements in 

E&4-81 . 

N o t e 2. 1, Since the sheaf of motions of system (1.1) under controls u and 

u satisfying (1.3) is a compactum in C” ([to, 191; H* (Q) X L. (Sk)), without loss 
of generality we can assume that set 1~ is a compactum in RI ‘% H’ (9) x L, (9). 

T h e o r e m 2.2. Problem 1 on encounter has a solution if and only if the 

condition 

is fulfilled for the initial position {to, wo, y,, y,} . Under inclusion (2.4) the 
solution of the problem is provided by the strategy U* extremal to set W (M”). 

Let us consider the main features of the proof of this theorem. Let re [tla = 
ir-!J Itla, Y It, * IA, 3t' It, * IA} be the motion of system (1. l)-( 1.2), corresponding 
to the extremal strategy U” and the selected partitioning A (zI) of the interval 

[to, SJ. We introduce the following functionals 
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Taking into account the definition of extremal strategy UC and the stability of set 

W ~~~*~ f we obtain the estimate5 

for e IT& and y It(“)]. Here !(la) E izi, -ti+rI satisfies the 
second inclusion in (2,1> and the quantities r-g are determined from (2,2). The 
theorem’s assertion follows from estimates (2.5) and the compactness of the sheaf of 
motions of system (1.1) in R, x HI ($2) x L, (52) . 

N o f e 2.2, The strategy V yieldhg the solution to Problem 2 can be 
constructed as a strategy extremal to a certain v-stable set. 

As in [l, S-S] we can delineate a broader class of sets N (for example, sets 
convex, closed and bounded in H, X H1 (a) S A%, (Qt) for which the set W (Sil”) 
admits of an effective description in the form of linear inequalities in 
R, x H1 in> X L, (8)). 

The author thanks 1% S. Osipov for the formula~on of the problem and For 
valuable advice. 
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